三角形で面積比と底辺の比の関係は?平面図形分野の頻出問題を考える

  • このエントリーをはてなブックマークに追加
みみずく先生のプロ家庭教師&ライター奮闘記

中学受験算数の平面図形分野では、三角形の面積比に関する問題が頻出です。たとえば、次のような問題をよく見かけます。

下図のア~エの三角形は、それぞれ△ABCの面積の何倍か。なお、赤い点は、各辺を等分する点である。

みみずく先生のプロ家庭教師&ライター奮闘記

多くの中学受験生(だけでなく中学生や高校生も)は、このタイプの問題を苦手とします。本記事では、受験生を悩ませる面積比について図解します。

広告

高さの等しい三角形

高さが等しい2つの三角形は、面積比と底辺の比が等しい。

この重要事項をきちんと理解するところからスタートしましょうね。分かりやすいように、具体例で考えてみます。

みみずく先生のプロ家庭教師&ライター奮闘記

アとイの面積比を考える場合、1本の補助線を描きます。大きな三角形の頂点のうち、ア・イ両方の三角形の頂点が集まっている頂点から、向かい合う辺に垂直になる線を引きます。

みみずく先生のプロ家庭教師&ライター奮闘記

この補助線は、ア・イ両方の三角形の高さになります。つまり、アとイは、高さが等しい三角形ですね。ということは、面積比は「ア:イ=3:4」です。

広告
  • このエントリーをはてなブックマークに追加
広告

コメントをどうぞ

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です